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We study an invasion percolation model for drainage where the disorder comes partly from capillary
thresholds and partly from height differences in a rough self-affine landscape. As a function of the buoyancy,
the geometry of the invaded clusters changes dramatically. Long-range correlations from the fracture topog-
raphy induce a double cluster structure with strings and compact blobs. A characteristic length is introduced
comparing the width of the capillary threshold distribution and gravity effects at the pore scale. We study
electrical properties of percolating clusters. Current distributions along percolating clusters are shown to be
multifractal and sensitive to the buoyancy.

PACS number~s!: 47.55.Mh, 47.55.Kf, 64.60.Ak, 91.45.Vz
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I. INTRODUCTION

Invasion percolation@1# has proven to be an accurate d
scription of slow drainage processes in porous media, wh
a nonwetting fluid deplaces a wetting fluid at such low v
locities that capillary forces dominate in comparison to v
cous forces. There is good quantitative agreement betw
experimental results and numerical investigations using
invasion percolation model@2#.

With small modifications, the invasion percolation mod
takes into account effects of buoyancy on the drainage
cess in addition to the capillary forces@3#. Also in this case
there is quantitative agreement between numerical inves
tions and experiment@5–7#.

Another extension of the invasion percolation model h
been in the direction of assuming that the disorder it conta
has spatial self-affine correlations@8–13#.

In the present paper, we study invasion percolation w
buoyancy forces containing self-affine correlations. The
perimental system we have in mind is a self-affine gou
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filled fracture joint. The gouge makes this system a poro
medium, and capillary effects occur during drainage. As
fracture joint is rough, the buoyancy effect comes into pl
The roughness is self-affine, and this introduces long-ra
correlations into the disorder in the invasion percolati
model that model the buoyancy forces.

The relevance of such a model may be apprecia
through noting that generally oil transport in reservoirs o
curs in fractures rather than in the porous reservoir ro
themselves. This is typical in, e.g., chalk or granite form
tions where the permeability of the rocks is measured
millidarcy.

Self-affinity is defined through scaling properties of t
conditional probability function. We assume that the fractu
joint is oriented such that it is described through the funct
h5h(rW), whererW5(x,y) is a point in the plane defined b
the average height of the joint. The conditional probabil
function is g(Dh,DrW), where Dh5h22h1 and DrW5rW2

2rW1, and gives the probability density that the height of t
joint is h2 at rW2 given a heighth1 at rW1. Suppose we scale
DrW→lDrW. The joint is self-affine if

lHg~lHDh,lDrW !5g~Dh,DrW !, ~1!
-
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whereH is the Hurst exponent@14#. Assuming that the frac-
ture joint has an area ofL3L, we define the width of the
joint roughness over this area asw5A^h2& ~remembering
that ^h&50). Given that the joint is self-affine with a Hurs
exponentH, we find thatw;LH. Thus, whenH,1, the
joint is asymptotically flat, asw/L→0 whenL→`. It has
since long been observed that fractures in brittle mater
are self-affine@15#. However, many more recent experime
tal studies of brittle fractures suggest that the Hurst expon
for these systems takes a universal value, i.e., independe
the material that is fracturing, which is close to 0.8@16–20#.
Thus, brittle fracture joints are asymptotically flat.

In earlier studies of invasion percolation with self-affin
correlations in the disorder@8–12#, the physical system tha
the authors had in mind was a drainage process in a
affine fully open fracture. In making a mapping from drai
age in this system to a correlated invasion percolation pr
lem, an assumption is made that the inverse of the len
scale set by the crack opening dominates with respect to
local curvature of the fluid-fluid interface parallel to the fra
ture walls. As the fracture opening is self-affine, it may att
large values with the result that the above crucial assump
no longer holds. Thus, the above mapping cannot hold
ymptotically large systems, and is therefore only valid in
crossover regime@21#.

In the system that we have in mind, and which has b
studied experimentally in Ref.@27#, the drainage process oc
curs in a gouge-filled and self-affine fracture joint. A fractu
joint consists of two opposite fracture surfaces that h
been pulled apart a given distance in the direction orthogo
to the average fracture surface plane. Thus, the apertu
constant all over the fracture.

We study the shape of invasion percolation clusters w
trapping. In terms of the equivalent experimental situati
trapping means that to once an island of the original~defend-
ing! fluid has been trapped inside the ocean of the invad
fluid, its volume does not change. However, it may migra
and we introduce and study such rules in the invasion pe
lation algorithm. Other attempts at adding migration rules
the invasion percolation model may be found in@22–26#.

Besides the geometrical shapes of the invasion perc
tion clusters which change profoundly with changing buo
ancy, we also study their electrical properties. This provi
information of interest that couples to resistivity measu
ments in an experimental or field situation for that matt
The current distribution in the clusters of the invading liqu
also provides tools for studying their geometry. We dem
strate this.

In Sec. II we start by defining the invasion percolati
model and its connection with the percolation problem a
with slow drainage in porous media. We then describe h
buoyancy is added to the invasion percolation model.
emphasize here that when there are gradients in the sy
due to buoyancy effects, the connection with the percola
problem is more complex, due to physical instabilities~in
contrast to numerical! in the invasion percolation algorithm
We end this section by describing how we model migrat
of clusters of liquid. Section III is devoted to an analysis
the cluster structure obtained with the extended invasion
colation algorithm. The most striking feature is that when
buoyancy effects are strong, a ‘‘blobs-and-strings’’ struct
ls
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emerges; see Fig. 1. This is in contrast to the structure
percolation clusters with self-affine disorder. The differen
between the two is due to the physical instabilities int
duced through the gradients owing to the self-affinity. Figu
1 should be compared to Fig. 2, which shows experime
drainage clusters produced at different gravities,g, 3g, and
6g; see Ref.@27#. ~These values were obtained by runnin
the injection process in a centrifuge.! Increasing gravity cor-
responds to the increasing importance of buoyancy. Clea
a ‘‘blobs-and-strings’’ picture emerges as gravity is i
creased. In Sec. III A, we show how this ‘‘blobs-an
strings’’ picture ensues from the hierarchical structure of
self-affine fracture landscape in the limit when buoyan
completely dominates the drainage process. In Sec. III B,
discuss how the competition between buoyancy and capil
effects may be measured through the introduction of a cro
over length scalejc . We predict that this length scale obey
certain scaling laws with respect to a dimensionless mea

FIG. 1. Four invasion percolation simulations done on the sa
2563256 lattice, using injection along the lower edge. We ha
included trapping effects, but there is no migration. The fluctuat
numbers were~a! 1026, ~b! 1022, ~c! 1, and ~d! 100. The back-
ground shading shows the structure of the self-affine height di
bution. Lighter color signifies a higher position. The Hurst expon
of the height distribution isH50.8, corrersponding to natura
brittle fractures.

FIG. 2. Experimental drainage clusters at an effective gravity
~a! 1g, ~b! 3g and ~c! 6g. ~From Ref.@27#.!
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of the importance of buoyancy and capillary effects, the fl
tuation number. We demonstrate the validity of this pred
tion through numerical experiments. In Sec. IV, we study
electrical transport properties of the drainage clusters.
end by some concluding remarks in Sec. V.

II. MODEL

A. Invasion percolation, percolation, and slow drainage

Before describing our modifications to the original inv
sion percolation algorithm@1#, we explain the latter. We as
sume a square lattice of sizeL3L. At each bondi j in the
lattice—connecting neighboring nodesi and j —we assign a
random numberr i j drawn from a uniform distribution on the
unit interval. These numbers remain fixed throughout the
culation. In addition to these fixed numbers, each bond
two states:~i! invaded or~ii ! not invaded. Letw i j 50 signify
that bondi j has not been invaded and letw i j 51 signify it
has been invaded. We initialize the lattice by setting allw i j
50. We choose a set of nodes as inlet points in the sys
The set consists of all nodes along one of the borders of
lattice. This we call edge injection. We now search amo
the bonds that are directly attached to the inlet nodes
identify the bond having the smallest random numberr i j .
We invade this by setting the correspondingw i j 51. Assume
now thati was one of the inlet nodes. After the invasion
bond i j , node j has become an interface node. In order
proceed with the next injection step, we now search tho
all bonds connected directly to the inlet nodesand the inter-
face nodes, identifying the one with the smallest rand
numberr i j associated with it. This bond is invaded and th
algorithm is repeated. We stop the algorithm once any o
given set of outlet nodes have been reached. The outlet n
are those defining the opposite edge of the lattice.

The physical situation that this algorithm models is slo
injection of a nonwetting fluid into a porous medium fille
with a wetting fluid. This is drainage. The reason for havi
the nonwettingfluid as the invading fluid is that otherwis
film flow may occur, making the use of a binary variablew i j
to describe the state of a bond is impossible. The bond
responds to a pore in the porous medium. The reason
emphasis is put onslow injection is that viscous forces in thi
limit are negligible in comparison to other relevant force
which are the capillary and buoyancy forces. For the ti
being, we assume the porous medium to be two-dimensi
and oriented horizontally so that there are no effects of gr
ity. We are then left with the capillary forces. When th
invading fluid is pushed through a pore, the pore shape
determine what pressure is needed, and this value is
trolled by the pore neck. The random numbersr i j model the
pressures necessary to invade the pores, which are dis
uted due to the distribution of pore necks.

There is a close relationship between the invasion pe
lation algorithm and the standard percolation problem@28#.
To best demonstrate this relationship, we define the perc
tion problem in an operational way. Imagine for simplicity
square lattice. Assign to each bondi j a random numberr i j
drawn from a uniform distribution between zero and on
Introduce a control parameterp. For a given value ofp, set
all bonds whose random numberr i j <p to ‘‘occupied’’
(f i j 51). The other bonds are unoccupied,f i j 50. For p
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51, all bonds will be occupied; forp50, they will all be
unoccupied. For intermediate values ofp, the occupied
bonds will be scattered about in the lattice. We define
cluster of occupied bonds as the set of bonds that are
nected through common nodes. Assume now that the la
is infinite in size. There is then a criticalp5pc , the perco-
lation threshold. Forp,pc , all clusters of occupied bond
are finite in size. Forp.pc , there is one infinite cluster
Whenp5pc—which is 1

2 for the square lattice—the system
is critical, and the geometry of the clusters has scaling pr
erties described through universal critical exponents.

We now return to invasion percolation. Imagine runni
the invasion percolation algorithm to a point whereN bonds
have been invaded. Let us definer (N) as the largest random
numberr i j that has been picked so far. We now iterate t
invasion percolation one more time, and a new random nu
ber r i j

(N11) is chosen. Either~i! r i j
(N11)>r (N) or ~ii ! r i j

(N11)

,r (N). In case~i!, we have thatr (N11)5r i j
(N11) and in

case~ii ! r (N11)5r (N). Suppose now we make an identic
copy of the lattice used for the invasion percolation proce
including the same distribution of random numbersr i j . We
will use this second copy for percolation. Let us now assu
that situation~i! above occurred at the (N11)th iteration of
the invasion percolation. Adjusting the percolation cont
parameterp to the valuep5r (N11) will produce a perco-
lation cluster connected to the inlet nodes that are identica
the invasion percolation cluster at iteration (N11). ~Note
that we have not introduced anytrapping rulesso far.! If, on
the other hand, situation~ii ! occurs, the invasion percolatio
cluster will be a subset of the percolation cluster connec
to the inlet nodes whenp5r (N11). Inverting this argu-
ment, we see that for anyp there is a corresponding stage
the invasion percolation process wherer i j

(N11)5r (N11)
5p, and where the cluster in the invasion percolation pro
lem is identical to the cluster in the percolation problem th
is connected to the inlet nodes. We also note that the lar
valuer (N) can attain is the percolation thresholdpc , as the
iteration is stopped once any of the outlet nodes are reac
It is, however, important for what follows to note that whe
the invasion percolation algorithm is stopped at the po
when one of the outlet nodes is reached, the system may
be stable. That is to say, the last picked random numberr i j ,
may not be the largest one that has been encountered d
the iteration. Thus, there may be a difference between
invasion percolation cluster at this stage and the percola
cluster connected to the inlet nodes withp adjusted to the
largest threshold that has been picked.

The physical idea behind the random numbersr i j intro-
duced in the invasion percolation model is that they mo
the capillary pressure thresholdsPi j

t caused by pore necks i
the porous medium. Ifg is the surface tension, the relatio
between capillary threshold—measured in units
pressure—and the threshold radius of curvatureai j for inva-
sion of porei j is

Pi j
t 5

g

ai j
. ~2!

In order to perform the slow drainage process, a pressuP
must be applied to the injected fluid which is equal to t
capillary pressure necessary at a given pore neck in orde
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the fluid to invade this pore,P5Pi j
t . Suppose now that we

control the pressure during the injection process. For a gi
pressureP, we will inject fluid until we reach a situation
where all pore necks that are susceptible to injection are
narrow that the pressure necessary to continue is larger
P. The injection process then stops, and only whenP is
adjusted to a new and sufficiently high value will invasion
further pores occur.

Comparing the invasion percolation model, the perco
tion model, and the physical drainage problem, we see
the control parameterp in the percolation problem and th
pressureP in the drainage problem are related. The relat
is the same as between the capillary thresholdsPi j

t and the
random numbersr i j .

Trapping is built into the invasion percolation algorith
through identifying the clusters of uninvaded bonds s
rounded by invaded ones. These are not susceptible to i
sion. There is no counterpart to this mechanism in perc
tion, and with trapping invasion percolation clusters diff
from percolation clusters. However, their external perimet
remain identical.

B. Buoyancy effects

In order to introduce buoyancy effects in the invasi
percolation model@6#, we need to be more precise in defi
ing pressure. There is the threshold capillary pressure ne
sary at a given interface when situated at some pore neci j ,
Pi j

t . Let us choose a reference heighth50 and consider the
corresponding capillary pressure measured at this he
The reference capillary pressurePi j at the heighth50 when
the pore necki j is invaded is different from the capillar
thresholdPi j

t at a heighthi j . The subscripti j denotes that
this is the capillary pressure necessary to invade porei j . The
invading liquid has a densityr i while the defending liquid
has a densityrd . The gravitational constant isg, and we
have that

Pi j 5Pi j
t 2Drghi j , ~3!

whereDr5r i2rd . Introducing this effect in the invasion
percolation model, the random numbersr i j represent the
threshold pressuresPi j

t , but the algorithm choosing which
bond to invade next should compare the capillary press
Pi j at the reference heighth50, not the threshold pressure
themselves,Pi j

t . Thus, the bond with the smallestPi j that is
connected to the inlet nodes or the interface nodes gets
vaded next.

The width of the distribution of capillary thresholds
given by

wt5@^Pi j
t 2&2^Pi j

t &2#1/2. ~4!

It is the width of the capillary pressure distribution which
the important characteristic pressure for the drainage proc
Let us assume that the average critical radius of curvatur
a. We may then express the pressure involved in the in
tion process in dimensionless numbers,P̃i j 5Pi j /wt , pi j

t

5Pi j
t /wt , and Drghi j 5Fh̃i j , where h̃i j 5hi j /a and F

5Drga/wt is the fluctuation number. It is this dimension-
n
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less number that determines the relative importance of c
illary and buoyancy effects in this problem, and Eq.~3! be-
comes

P̃i j 5pi j
t 2Fh̃i j . ~5!

Thus, the invasion percolation algorithm with self-affin
buoyancy effects proceeds by assigning random num
randomly to the bonds in the lattice. The distribution
thresholdspi j

t reflects the pore throat distribution and is ge
erally complex. For our present simulations, we simp
chose this distribution to be uniform on the unit interval.
we were to simulate a given cumulative threshold distrib
tion P(pt), giving the probability to find a threshold valu
less thanpt , Eq. ~5! would become

P̃i j 5P21~r i j !2Fh̃i j , ~6!

wherer i j is a random number drawn from a uniform distr
bution on the unit interval@27#. For the self-affine height
distribution, we use the Voss algorithm@4# and assign anhi
to all nodes i. Thus, we need to calculatehi j , which is as-
sociated to the bondi j from hi andhj . A natural choice is
an averagehi j 5(hi1hj )/2. However, as we will see in Sec
II C, this creates problems when migration is taken into
count. We therefore defer further discussion of this point
that section.

Imagine for a moment a flat model oriented at an anglu
vis àvis the horizontal. Injection occurs with the lighter flui
at the top edge@5,6#. When F.0, the injection process is
stable—i.e., does not produce ramified fractal structures~ex-
cept in a narrow zone whose width is controlled byu)—and
the cluster of the injected fluid may be analyzed in the sa
way as gradient percolation@29#. However, when the lighter
fluid is injected from the bottom, the injection process
unstable@7# and elongated stringy structures ensue. The
ing of the flat model corresponds in terms of the invas
percolation algorithm to settinghi j 5yj sin(a), whereyj is
the distance of nodej from the lower edge, in Eq.~3!.

It is interesting to note the relation with percolation at th
point. When injection is from the top and the process
stable, situation~i!, described in Sec. II A, occurs frequentl
and when this happens the percolation cluster connected
the inlet nodes that is found by settingp equal tor (N) is
equal to the invasion percolation cluster.

However, when injection is from the bottom and the pr
cess is unstable, situation~i! will typically not occur. That
means there will be little resemblance between the invas
percolation cluster and what would have been the co
sponding percolation cluster. The stringy structures found
invasion percolation have no correspondent in the perc
tion problem.

C. Migration effects

Migration occurs when a cluster moves without chang
volume. Thus, for each pore invaded by one of the flui
there is another pore belonging to the perimeter of the sa
cluster that is invaded by the opposite fluid. The net effec
this is that the cluster moves—and perhaps also chan
shape. This is a troublesome effect. Assume that it is
invading, nonwetting fluid that is migrating inside a bac
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ground of the defending, wetting fluid. Where it is the m
grating cluster that invades bonds, locally one is dealing w
a drainage process. However, those bonds that are bein
vaded by the wetting fluid are experiencingimbibition. The
trouble with imbibition is the possibility of film flow. Thus
we may encounter a situation where pores are capabl
transporting both fluids at the same time. This leads tonon-
local effects when attempting to construct a model based
invasion percolation. By nonlocality we mean that a giv
bond may be occupied by the wetting liquid without shari
any nodes with bonds already occupied with this liqu
Rather than attempting to model these nonlocal effects,
simply ignore them.

When a cluster migrates, for those bonds that are filled
emptied by drainage~a nonwetting fluid replaces a wettin
fluid!, the mechanism for choosing which bond to invade
identical to the one used in the standard invasion percola
algorithm. However, for those bonds undergoing imbibiti
~a wetting fluid replaces a nonwetting fluid! during migra-
tion, the capillary pressure is close to zero. In the general
invasion percolation model, we simply set all capilla
thresholds related to imbibition to zero. Thus, the critic
pressure that is used in determining which bond to upd
among those susceptible to imbibition, is

P̃i j
i 52Fh̃i j . ~7!

At this point let us use the notationP̃i j
d for the drainage

critical pressure defined in Eq.~5!.
In order to perform an injection or migration step, we fir

classify all interfaces in the system. One interface separ
the inlet nodes from the outlet nodes. The other interf
defines bubbles, or closed-off clusters. For each clusteK,
including the one separating the inlet from the outlet, de
mine among the bonds susceptible to drainage the one
the smallestP̃i j

d , which we callP̃K
d . Then, determine amon

the bonds susceptible to imbibition the one with thelargest

P̃i j
i , largest since the imbibition process invades a bond

the opposite direction from that of drainage due to the dir
tion of the capillary forces. We call this thresholdP̃K

i . We
then calculate the pressure difference

D P̃K5 P̃K
d 2 P̃K

i ~8!

of clusterK. When one of the pore necks is drained~i.e., is at
the threshold valueP̃K

d ), the pressure differenceD P̃K corre-
sponds to the capillary pressure at the imbibition pore. Th
we search among all clustersK the one that has the smalle
D P̃K . If this D P̃K is positive, all bubbles are stable, and
migration is possible. The bond with the smallest draina
threshold along the interface separating the inlet from
outlet is then invaded. This is an injection step. However
the minimumD P̃K is negative, the capillary pressure of on
of the pore necks becomes negative and migration occ
The bond on the interface of the corresponding cluster tha
most susceptible to drainage is invaded by the nonwet
fluid, whereas the bond that is most susceptible to imbibit
is invaded by the wetting fluid. Migration may occur for an
interface, whether it belongs to a bubble or to the interfa
separating the inlet from the outlet.
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The migration algorithm as it has been described so
contains a dangerous instability. The following situati
does occur: Once a migration step has been performed
two bonds that were invaded by the wetting and nonwett
fluids swap roles. That is, the bond that just underwent dra
age now becomes the bond that will undergo imbibition n
time and vice versa for the other bond. This happens w
the bubble is so close to being stable that apartial invasion
of the two bonds would have sufficed. However, this opti
is not possible with the present discrete model, and the c
plete invasion of the two bonds overshoots, so that
bubble is still unstable, but now in the opposite directio
The result is that the algorithm goes into an infinite loop.

This instability is avoided if more care is taken in howh̃i j
is defined. As was mentioned in Sec. II B, the heights
defined at the nodes, andh̃i j is some function ofh̃i and h̃ j .
Settingh̃i j 5(h̃i1h̃ j )/2 leads to the above instability. How
ever, settingh̃i j 5min(h̃i ,h̃j) in the drainage critical pressur
P̃i j

d , and h̃i j 5max(h̃i ,h̃j) in the critical imbibition pressure

P̃i j
i , ensures that both the drainage and the imbibition

maximally stable, and the overshoot is prevented. The in
bility is cured.

We show in Fig. 3 two drainage clusters. The differen
between them is the capillary threshold distributions t
were used. In both cases, a uniform distribution was us
but one was shifted compared to the other. That is, the
tribution for the left figure was uniform on the interval@s,s
11#, where s510, while for the figure on the right,s
5105. In the figure on the left, there is no migration~i.e.,
continuous cluster!, while in the figure on the right, there i
migration ~i.e., split in discontinuous clusters!. We note that
the shift s is proportional to the average of the capilla
threshold distribution. This is the essential quantity th
buoyancy is compared to in defining the Bond numberB
5a2Drg/g. Thus, the Bond number is the proper parame
that controls migration.

III. GEOMETRY OF CLUSTERS

In this section we discuss the geometry of the invas
percolation clusters at various fluctuation numbers, w
trapping and with and without migration effects.

A. Infinite fluctuation number

In this limit (F→`), gravitational forces dominate com
pletely. We show in Fig. 1~d!, a 2563256 lattice with injec-

FIG. 3. Effect of migration. In~a!, the capillary threshold dis-
tribution is uniform on the interval@s,s11#, wheres510, while in
~b! s5105. The system size wasL5128.
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tion along the lower edge at a fluctuation numberF5100.
As we will demonstrate in Sec. III B, this is sufficiently hig
for gravity to completely dominate capillary disorder, a
the system acts as ifF were infinite. In Fig. 1~a!, on the other
hand, we show the same system, but now
F51026—which is sufficiently low for any buoyancy ef
fects to be irrelevant. Thus, comparing these two figures,
sees the difference between ‘‘standard’’ uncorrelated in
sion percolation~a! and correlated invasion percolation wi
self-affine disorder~d!. The striking feature in the infinite
fluctuation number case is the stringy appearance of
cluster—somewhat like beads on a string. This is typica
is caused by the structure of the self-affine surface.

Self-affine surfaces are hierarchical. They contain vall
within valleys and mountains on mountains. Making a c
through a self-affine surface produces a one-dimensio
self-affine profile. The hierarchical structure of the cut m
be quantified through the valley size distributionN(D,h).
This is the probability density to find a valley of widthD a
heighth above a point on the self-affine profile. That is, dra
a horizontal line a heighth above the chosen point on th
self-affine profile. The horizontal line will cut the self-affin
profile at an infinite number of points. The distance betwe
the two cuts that are closest and next closest to where
heighth was measured isD. In Ref. @30# it was shown that

N~D,h!5
hb

D22H
GS h

DHD , ~9!

whereb51/H21 andG(z) is a function that tends toward
a constant for small arguments and falls off faster than
power law for large arguments, as, e.g., exp(2z2) does. Such
a power law signifies that the underlying valley structure
hierarchical.

When slow drainage is performed in such a hierarch
landscape for infiniteF, the drainage front will constantly
change between stable and unstable situations as defin
Sec. II A, where percolation and invasion percolation w
compared: The process is stable if the pressure at the
must be increased to further advance the invasion fr
while it is unstable when the maximum pressure has b
reached at some earlier stage of the injection process.

As was described in Sec. II B, when a lighter nonwetti
fluid is injected into a heavier, wetting fluid from above in
tilted flat model, the injection is stable and a compact str
ture ensues, while if the injection is from below, the injecti
is unstable and the injection structure becomes stringlike

Thus, in the self-affine landscape, the invasion percola
cluster will consist of a series of ‘‘blobs’’ connected b
‘‘strings’’ as shown in Fig. 1~d!. The blobs occur in the
regions where the invasion process is stable. This is wh
the landscape has a local maximum. As the invasion fr
reaches a saddle point leading to a region where there
local maximum, the process will be unstable and it will se
out the most convenient path leading to the local maximu
The result is a stringlike structure. Once the invasion proc
has reached the maximum, it becomes stable and a com
blob develops around this maximum. This goes on unt
new saddle point is reached that leads to another local m
mum. The process is from then on unstable until a new m
mum has been reached. A new blob then forms around
t
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maximum. This cycle is repeated over and over, resulting
the ‘‘blobs-and-strings’’ structure.

We record in Fig. 4, the reference capillary pressureP̃i j
as a function of the number of invaded bonds for fluctuat
numberF51022 andF51. In Fig. 4~a!, where the capillary
forces dominate, the pressure develops in a noisy way.
stable regions are those when theP̃i j at the last invaded bond
is larger than allP̃i j that have occurred before, while th
unstable regions are those where this is not true. We see
these regions are intermixed in this case. However, when
fluctuation numberF51 @Fig. 4~b!#, there is a clear separa
tion between the stable and unstable regions of the signa
is also clear that the signal is hierarchical in this case. Th
are local regions where the signal drops within regions t
are already unstable. This means that the blobs-and-str
picture is a hierarchical one. As a blob is developing due
a local maximum, the process by which this happens is
that creates blobs and strings at a smaller scale inside
area eventually to be flooded by the developing blob.

In Fig. 5, we show the invaded cluster that gave rise to
pressure curve of Fig. 4~b!. The invaded cluster is shown i
gray. The black areas consists of those bonds that have aP̃i j
smaller than or equal to the maximum pressure encount
during the injection process, i.e., the percolation cluste
The blob connected to the lower edge of the figure overl
almost completely with the percolation cluster in the sa
region. This indicates that the invasion percolation proc
was stable long enough to completely fill out this regio
However, further up in the figure, we see a blobs-and-stri
structure entirely inside the percolation cluster. This
caused by the hierarchical structure of the system: This

FIG. 4. Injection pressureP̃i j as a function of the number o
invaded bonds for fluctuation number~a! F51022 and ~b! F51.
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gion would eventually have been completely filled as
lower one was, but the invasion process reached the u
edge before it was complete. This filling out process p
ceeds through a blobs-and-strings process at a smaller
— as described in connection with the pressure curve
4~b!.

B. Finite fluctuation numbers: A crossover length

There is a crossover length between standard inva
percolation and invasion percolation controlled by buoyan
only. The reason for this is as follows. The distribution
injection pressuresPi j consists of two independent distribu
tions @see Eq.~3!#: The capillary thresholdspi j

t and the
heightshi j . As hi j is self-affine, the width of the distribution
is

wh~j!/a5@^h̃i j
2 &#1/25~wa /a!~j/a!H, ~10!

wherej is the linear size of the area over which we meas
the width andwa is the width of the distribution at the por
scale:wa5wh(a). The width of the distribution of capillary
thresholds is

wt5@^Pi j
t 2&2^Pi j

t &2#1/2. ~11!

The quantityFwh /a then reflects the ratio between the wid
of the hydrostatic pressure distribution and the capill
pressure threshold distribution. WhenFwh /a!1, the capil-
lary disorder dominates and the modified invasion perco
tion algorithm produces standard invasion percolation c
ters. In the other limit, whenFwh /a@1, buoyancy
dominates and the system behaves as described in Sec.
When

15Fwh~jc!/a, ~12!

the two disorders balance each other. This equation defin
length scalejc when combined with Eq.~10!,

FIG. 5. The invaded cluster~in gray! that gave rise to the pres
sure curve of Fig. 4~b!. The black areas consist of those bonds t

have an injection pressureP̃i j smaller than or equal to the max
mum pressure encountered during the injection process, i.e.
percolation clusters.
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jc /a5~waF/a!21/H. ~13!

On length scalesj larger thanjc , the buoyancy dominate
and one sees invasion percolation with self-affine disord
and withj smaller thanjc one sees essentially standard i
vasion percolation.

We see from Eq.~13! that the relevant variable that gov
erns the relative importance of the buoyancy to capilla
forces is the fluctuation number.

Returning for a moment to Sec. II C, we may pose a sim
lar question for what determines migration versus injecti
The crucial quantity here is the pressure differenceD P̃K de-
fined in Eq.~8!: Is it larger than zero~injection! or smaller
than zero~migration!? As the imbibition pressure~7! only
depends on the heighth̃i j of the bond susceptible for imbi
bition while the drainage pressure@see Eq.~5!# depends both
on the height and the threshold distributiont̃ i j , the question
whether migration or injection dominates is answer
through comparing theaveragethreshold distribution with
the averageheight difference across clusters. Thus, it is n
the fluctuationnumberF that is relevant here, but rather th
bond numberB, as has already been pointed out at the end
Sec. II C.

In our simulations, the prefactorwa in relating horizontal
length to vertical height is 0.078, and the Hurst exponen
0.8. The capillary thresholds are drawn from a flat distrib
tion on the unit interval, and hencewt

25 1
12 . We set the lat-

tice constant to unity. Inserted into Eq.~13!, we get jc
51.12/F1.25. Buoyancy dominates completely whenjc51.
This gives us a critical fluctuation number ofFB51.10. Cap-
illary disorder dominates, on the other hand, completely i
finite lattice of sizeL when jc5L. This leads to a second
critical fluctuation numberFC51.10/LH. For L5256, this
givesFC51.331022. In Fig. 1 we show a series of invasio
percolation simulations done on the same 2563256 lattice,
using edge injection. We have included trapping effects,
there is no migration. The fluctuation numbers were 1026,
1022, 1, and 100. In Fig. 1~a! we are dealing with standar
invasion percolation, as there is no effect from the hei
distribution. In Fig. 1~d!, where the fluctuation number i
100, buoyancy dominates completely. Figure 1~b! is at a
fluctuation number very close toFC51.331022, while Fig.
1~c! is at a fluctuation number very close toFB51.10.

In order to measure directlyjc , we use the following
numerical procedure. Generate a network by distribut
heightsh̃i j and thresholdspi j

t . Now, make an exact copy o
this network. One of the two identical networks runs t
invasion percolation algorithm with the fluctuation numberF
set to zero, while the other network runs it with the fluctu
tion number set to the value for which we wish to calcula
jc . Record the relative difference between the two clust
that develop, defined as the number of bonds that do
belong to both clusters divided by the number of bonds t
has been invaded in either of the two lattices. When t
difference has reached a prefixed value, say 10%, stop.
then start from the edge where the invading fluid was
jected and compare clusters line for line in the direction p
pendicular to this edge. When a difference of 10% has b
reached, the distance from the injection edge isjc . In Fig. 6
we showjc as a function of fluctuation numberF using 5%,

t
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10%, 20%, and 30% difference between the two clusters
basis. The length scalejc becomes less sensitive to the val
chosen for the relative difference between the two cluster
this value is decreased: There is hardly any difference
tween the 5% and the 10% data. We also see that thejc as a
function of F follows Eq. ~13! for these two data sets. Ou
theoretical arguments are therefore supported by our sim
tion results.

Figure 7 shows the invasion clusters for fluctuation nu
bersF5100 for two different landscapes. There is a hu
difference in the size of the two clusters, even though
parameters are the same. We defineMi as the number of
invaded bonds at the point when the cluster reaches ac
the network averaged over different samples.DMi is the
sample-to-sample fluctuations~rms! of the same quantity. In
Fig. 8, we show the relative mass fluctuations,DMi /Mi , as
a function of fluctuation numberF. As is evident from this
figure, the fluctuations increase dramatically with increas
fluctuation number.

IV. ELECTRICAL TRANSPORT PROPERTIES

We now turn to studying transport properties of the
jected clusters. There are several reasons for doing this.

FIG. 6. Evolution of the crossover lengthjc as a function of
fluctuation numberF for 5%, 10%, 20%, and 30% difference be
tween invasion clusters at finite and zero fluctuation number.
straight line has a slope of 1/H51/0.851.25. The system size wa
2563256 and each data point is averaged over 100 samples.

FIG. 7. Two different self-affine landscapes invaded from
lower edge for a fluctuation numberF5100.
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is that the invading fluid itself has to be transported throu
the invaded parts of the porous medium in order to exp
further the interface between itself and the invaded flu
Even though one of the conditions for the invasion perco
tion algorithm to describe a given physical situation is th
viscous forces are negligible compared to the capill
forces, it is not given that the viscous forces may be
glected in studying other phenomena connected to the s
invasion process. The viscous forces give rise to the dis
bution of flow velocities through the different pores. On
example where this distribution might be of interest is wh
the invading fluid contains suspended particles. The tim
spends in a given pore will determine how much will se
ment in that pore. Thus, knowing the flow velocities w
determine the sedimentation patterns in the porous med

There might also be quantities other than the invad
fluid itself, which is transported through the invading clust
If, for example, the invading fluid is electrically conductin
electrical current will flow through the invaded pores if
potential difference is set up. The current distribution w
however, be different from the velocity distribution of th
invading fluid since the effective electrical conductance d
tribution of the pores will be different from their permeab
ity distribution.

In this section, we will neglect complications due to pe
meability and conductance distributions in the transp
properties of the invaded cluster. Rather, we will assume
the transport properties of the individual pores are identic
The reason we can do this is that the invasion process we
studying produces fractal clusters. This fractal structure w
dominate the transport properties compared to the effec
the disorder that local permeability or conductance variati
introduce. As we will see in this section, the current or v
locity distribution in clusters with constant pore permeabil
and conductance is characterizable with power laws. On
other hand, permeability and conductance distributions w
induce current distributions that fall off at least as fast
exponentials.

It is the aim of this section to use the current distributi

FIG. 8. Evolution of the relative mass fluctuations as a funct
of the fluctuation numberF. Each data point is based on 10
2563256 networks.e
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in the invaded clusters as a measuring tool to further cha
terize their geometrical structure. The underlying reason
this suggestion is the rich, multifractal structure of the c
rent distribution in the random resistor network at the per
lation threshold that was uncovered in the mid-198
@31,32#. It is conceivable that the current distribution on t
invasion clusters generated at different fluctuation numb
will be as rich in structure as the random resistor network
the percolation threshold. The numerical evidence
present in this section shows that this is indeed so. We
demonstrate how the current distribution depends on
fluctuation number of the invasion process.

The invasion process is run from an injecting border u
the invading cluster has reached the opposite border of
network. Both opposite borders are used as electrodes a
potential differenceDV51 is set up between them. The cu
rent carried by each bond belonging to the invaded cluste
then calculated using a conjugate gradient algorithm@33#.

The conductance measured between the two electro
G, fluctuates from sample to sample. This results in the t
current flowing through the networkI 5GDV fluctuating
likewise from sample to sample. Since we seek to conn
the current flow in the bonds with the structure of the clust
to which they belong, it is advisable to move from thecon-
stant voltage ensemblewhere the voltage difference acro
each sample is kept constant to theconstant current en-
semblewhere the total current flowing in each sample is ke
constant. In practice, this is done by calculatingG from the
current distribution found whenDV51, and then normaliz-
ing this by dividing each of these currents byG.

We illustrate in Fig. 9 the current distribution for an in
vading cluster generated with a fluctuation numberF5100.
Bonds carrying large currents have been denoted with d
gray, while bonds carrying smaller currents are drawn w

FIG. 9. Current distribution in a percolating invasion clus
with a fluctuation numberF5100. The lattice size is 2563256.
The gray scale reflects the current distribution. Light gray cor
sponds to very small currents, and darker gray means larger
rents until black, which signals that the corresponding bond car
the entire current flowing in the cluster.
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light gray. Note, in particular, the black bonds. These carr
current equal toI 51. In the standard terminology of perco
lation theory, these are thered or cutting bonds—the first
term, because these are the ‘‘hottest’’ bonds in the sys
~from ohmian heating!, and the second term because if o
of these bonds is cut, the conductivity of the network w
drop to zero@28#. As is visible in Fig. 1, the bonds tha
constitute the invasion cluster falls into two types of stru
tures for high fluctuation numbers: bonds belonging to
blobs and bonds belonging to the strings. The blobs are c
pact structures, while the strings are not. Clearly, the stri
will carry a current equal to or close to the entire curre
flowing in the cluster, while the bonds belonging to the blo
will carry much lower current as it will be distributed amon
the bonds in each blob.

In Fig. 10 we show a series of histograms for networks
size 2563256 for different Fluctuation numbers rangin
from F51026 to F5100. This figure shows how a ‘‘string
peak’’ for bond currentsi close to one@ ln(i)50# appears and
grows in importance as the fluctuation numberF is in-
creased. The other, very broad peak on the left stems f
the bonds belonging to blobs. In Fig. 11, we show the nu
ber of red bonds as a function of lattice sizeL. We find that
it behaves as a power law,

M red;LDred. ~14!

Thus, the red bonds form a fractal set with dimensionD red
equal to 0.08 forF51026 to 0.67 forF5100. ~For perco-
lation, D red51/n53/4 @28#.! We see that there is no differ
ence in slope between theF51026 and F51022 data sets
and theF51 andF5100 data sets. This seems to sugg
that there are only two classes of behaviors:D red50.08 for
capillary-dominated drainage andD red50.67 for buoyancy-
dominated drainage.

In Fig. 12, we show the distribution of blob sizes,N(m),
as a function of the number of bonds belonging to a blob,m.
The blobs have been defined as clusters of bonds that ar

-
r-
s

FIG. 10. Histogram of current distribution in percolating inv
sion clusters with fluctuation numbersF51026, F51022, F51,
and F5100. The lattice sizes were 2563256, and 100 samples
were generated for each lattice size and fluctuation number.
total current entering each cluster was set to unity.
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red bonds. In the limit of high fluctuation numberF, the
blobs are a subset of the islands obtained from a cut of
fracture surface at a given height~see Fig. 5!. Distributions
of the blob size and of the cut island size have the sa
behavior. Blobs are shown to be compact with a fractal
mension close toDb52. Their spatial extensionD is related
to their dimension asD;m1/Db. Using Eq.~9!, we obtain the
following law for the blob distribution:

N~m!;m211Db2H/Db. ~15!

The roughness exponent isH50.8, which leads to the fit

N~m!;m21.1, ~16!

FIG. 11. Total number of red bonds as a function of netwo
sizeL for different fluctuation numbersF. The data points are av
erages over 200 samples.

FIG. 12. Distribution of blob sizes. The distribution is comput
with logarithmic binning and divided withm to get the distribution
corresponding to a linear binningN(m). The system size was
2563256 and 100 samples.
e

e
i-

which is very consistent with the numerical estimate of t
blob size distribution for high fluctuation numberF ~see Fig.
12!.

The current distribution in the random resistor network
the percolation threshold was shown to bemultifractal
@31,32#. Multifractality is most easily detected through th
scaling properties of the moments of the current distributi
They are defined as

M (n)5( i nN~ i ,L !;Ly(n), ~17!

whereN( i ,L) is the current distribution for lattices of sizeL.
The current distribution is multifractal if the scaling exp
nentsy(n) do not depend onn asy(n)5an1b. Multifrac-
tality implies that the proper scale-independent variables
describe the currents and their distribution area
5 ln(i)/ln(L) and f (a)5 ln„N(La,L)…/ ln(L). ~We note that
the implication does not go the other way; a power-law d
pendency ofN on i would imply the same scale-independe
description.!

We show in Fig. 13 the scaling exponentsy(n) as a func-
tion of n as calculated from the constant-current ensem
for fluctuation numbersF51026 and F5100. In the
constant-current ensemble,y(n) must approach the fracta
dimension of the red bonds,D red as n→`. If the current
distribution is not multifractal, this convergence combin
with the functional formy(n)5an1b implies that y(n)
5D red independently ofn. However, as can be seen fro
Fig. 13, this is not so. The current distribution is multifract
It is remarkable that the scaling exponentsy(n) for smallern
are so close to each other for the two different fluctuat
numbers that we have used. The geometry of the cluster
which the current flows is very different, as can be seen
Fig. 1.

FIG. 13. Evolution of the scaling exponenty(n) as a function of
the current moment ordern in the constant-current ensemble fo
two fluctuation numbers:F51026 and F5100. Lattice sizes
ranged fromL532 to L5256. 200 samples were generated forL
532, and 100 for the lattice sizes greater thanL532.
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V. CONCLUSIONS

We have studied a generalization of the invasion perc
tion algorithm to study drainage in a horizontally orient
gouge-filled fracture. The fracture is rough, and this int
duces buoyancy effects with self-affine correlations in
model. We also discuss migration effects due to buoyan
When buoyancy is weak compared to the capillary effe
the invading clusters are those of standard invasion perc
tion. However, as the importance of buoyancy increases,
structure of the invasion clusters attains a blobs-and-str
structure, see Fig. 1. The blobs-and-strings structure
hierarchical—and therefore fractal—and is caused by the
erarchical structure of the self-affine fracture landsca
where valleys are found within valleys and mountains
superimposed on mountains. We demonstrate that there
length scalejc that signals the crossover between capilla
dominance—and therefore standard invasion-percola
s
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behavior—and dominance of buoyancy, giving rise to t
blobs-and-strings structures. The crossover length scale
pends on the control parameterF which is thefluctuation
number. The blob size distribution is analyzed and shown
be consistent with a return probability argument. Lastly,
have studied the transport properties of the invasion clus
The current distribution of the invasion clusters is multifra
tal. We also find that the bonds belonging to the strings fo
a fractal set with fractal dimension either equal to 0.08 wh
capillary forces dominate or equal to 0.67 when buoyan
dominates.
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